lunes, 30 de marzo de 2015

Motor mas simple del mundo (Clubes)

Ley de Mendel (3 de BGU) Realizar cinco ejemplos sobre esta ley

Compuestos Nitrogenados ( 3 de BGU)( Realizar cinco ejercicios de estos compuestos y poner su nombre)

Acidos y bases (2 de BGU ) ( De las siguientes caracteristicas coloque cuál es de ácido y cuál es base

CARACTERISTICAS DE ACIDOS Y BASES Tienen sabor agrio (limón, vinagre, etc). Tiene sabor cáustico o amargo (a lejía) En disolución acuosa enrojecen la tintura o papel de tornasol En disolución acuosa azulean el papel o tintura de tornasol Decoloran la fenolftaleína enrojecida por las bases Enrojecen la disolución alcohólica de la fenolftaleína Producen efervescencia con el carbonato de calcio (mármol) Producen una sensación untuosa al tacto Reaccionan con algunos metales (como el cinc, hierro,…), desprendiendo hidrógeno Precipitan sustancias disueltas por ácidos Neutralizan la acción de las bases Neutralizan la acción de los ácidos En disolución acuosa dejan pasar la corriente eléctrica, experimentando ellos, al mismo tiempo una descomposición química En disolución acuosa dejan pasar la corriente eléctrica, experimentando ellas, al mismo tiempo, una descomposición química Concentrados destruyen los tejidos biológicos vivos (son corrosivos para la piel) Suaves al tacto pero corrosivos con la piel (destruyen los tejidos vivos) Enrojecen ciertos colorantes vegetales Dan color azul a ciertos colorantes vegetales Disuelven sustancias Disuelven grasas y el azufre Pierden sus propiedades al reaccionar con bases Pierden sus propiedades al reaccionar con ácidos

Sales inorganicas ( 1 de BGU ) Realizar cinco ejercios de sales halogenas neutras y cinco de sales oxisales

Sales inorgánicas Las sales son compuestos iónicos heterodiatómicos y heteropoliatómicos (hasta 5 iones) que resultan de la reacción de neutralización y metátesis entre sustancias de propiedades ácido-básicas opuestas. Las sales resultan de la neutralización entre un ácido y una base, un ácido y un metal, un óxido ácido y uno básico, hidróxido y metal, base y óxido o sal y sal; en todos los casos se produce sal y agua,… Las sales fundidas o en solución se disocian en iones; en estas, la base proporciona el catión y el ácido aporta el anión; un ejemplo es la sal de cocina NaCl. Cuando una cantidad conocida de átomos de hidrógenos de un ácido es reemplazada por igual cantidad de átomos de un metal, se obtiene una sal. Ejemplo: los dos átomos de H del ácido sulfúrico tienen en total estado de oxidación 2+ (2 x 1+ = 2+) y pueden ser sustituidos por dos átomos de Na, uno de Ca,… en todo caso se debe remplazar el número de cargas perdidas; como se indica en las ecuaciones. 2NaOH+ H2SO4 Na2SO4 + 2H2O Ca(OH)2+ H2SO4 CaSO4 + 2H2O Las sales son compuestos iónicos que tienen entre sus propiedades la capacidad de formar cristales, suelen ser solidas y solubles en agua, las más comunes tienen punto de fusión alto, baja dureza, y baja compresibilidad, conducen la electricidad cuando están fundidas o disueltas en agua. Por la complejidad y variedad de las sales, y por las muchas diferencias que presentan entre sí, es difícil encontrar un sistema de clasificación ideal para estas; lo más acertado es clasificarlas según sus propiedades ácido-básicas y de acuerdo con su procedencia y estructura; cada uno de estos dos grupos se subdivide y cada subdivisión se representa mediante su propia fórmula y una ecuación general. CLASIFICACIÓN DE SALES SEGÚN SU PROCEDENCIA Y ESTRUCTURA De acuerdo con la estructura y la procedencia; las sales se clasifican en haloideas, oxoácidas y dobles. Sales haloideas o hidrácidas Son sustancias iónicas heterodiatómicas y hetero poliatómicas formadas por reacción de neutralización entre un hidróxido y un ácido hidrácido. El nombre de sal hidrácida se debe a que estos compuestos se forman con ácidos hidrácidos; mientras que el nombre haloideas, hace referencia a la presencia de halógenos en la estructura de la sal, y a la formación de dicha sal a partir de compuestos constituidos por halógenos; aunque estas sales también tienen en su estructura elementos anfígenos. La fórmula general de las sales hidrácidas es MX o MnM, donde de M es un elemento metálico trabajando con carga positiva y nM ó X es un no metal con carga negativa, a esta fórmula también se le aplaca la regla de aspa. La ecuación y general para las sales hidrácidas es: MOH(ac)+ HX(ac) MX(s) + H2O(l) En la formación de una sal hidracida, los hidrógenos del ácido hidrácido se sustituyen por los metales del hidróxido en igualdad de cargas positivas, esto deja como resultado la unión de un metal y un no metal (sal sin oxígeno) y la formación de agua; la cual resulta de la unión entre aniones hidroxilo del hidróxido y cationes hidrógeno que salen del ácido hidrácido. Ejemplos de formación de sales hidrácidas: NaOH(ac)+ HCl(ac) NaCl(s) + H2O(l) Ca(OH)2(ac)+ H2S(ac) CaS(s) + 2H2O(l) Ejemplos de sales hidrácidas: Na2S, AgCl, KCl, CuBr, FeCl3, CaBr2, Al2S3, BeI2, ZnS, KI, MgCl2, AgBr,… Sales oxoácidas, oxisales u oxiácidas Son compuestos químicos heteropoliatómicos formados por reacción de neutralización entre un ácido oxoácido y un hidróxido; su estructura está formada por metal, no metal y oxígeno. Estas sales al igual que la mayoría, también se forman por la unión entre algunos cationes y aniones que no necesariamente provienen de óxidos, hidruros e hidróxidos; en todo caso se forma sal y agua. La fórmula general que mejor aplica para las oxisales es: MXO o MnMO, donde M es el catión metálico aportado por el hidróxido, el no metal (X o nM) y el oxígeno (O) constituyen un anión que tiene carga y, cantidad y variedad de átomos definida; este anión va entre paréntesis ( ) solo si al aplicar la regla de aspa los subíndices no se simplifican hasta quedar un único anión. Si hubiese necesidad de poner el anión entre paréntesis, la carga del metal le quedaría como subíndice para indicar la cantidad de aniones existentes en dicha sal oxácida. Una ecuación general para formar sales oxoácidas es: MOH(ac)+ HXO(ac) MXO(s) + H2O(l) En la formación de sales oxoácidas, los hidrógenos del ácido oxoácido se sustituyen total o parcialmente por los metales del hidróxido; así resulta la unión de cationes metálicos con el anión que queda del ácido; también se forma agua por la unión entre los aniones hidroxilo del hidróxido y cationes hidrógeno que salen del ácido oxoácido. Ejemplos de formación de sales oxoácidas: Co(OH)2(ac)+ H2SiO3(ac) CoSiO3(s) + 2H2O(l) 2Fe(OH)3(ac)+ 3H2CO3(ac)Fe2(CO3)3(s)+ 6H2O(l) Ejemplos de sales oxoácidas: Ca(MnO4)2, MgSO3,…

lunes, 23 de marzo de 2015

Barrita dulce de cereal ( Club)

Formulación de las oxisales (1 de BGU) Realizar diez ejemplos de sales oxisales con la nomenclatura tradicional


Formulación de las oxisales

La fórmula general de las oxisales es Ma(XbOc)n donde M es el elemento metálico, X es el elemento no metálico y O es el oxígeno. Los valores de a, b y c corresponden a los valores del oxoácido del que procede y n es la valencia del elemento metálico.

Nomenclatura de las oxisales

Existen las siguientes nomenclaturas para nombrar las oxisales:
Nomenclatura tradicional: se nombra de forma similar al ácido oxoácido del que procede sustituyendo la terminación -oso por -ito y la terminación -ico por -ato seguido del elemento metálico terminado en:
  • -ico (si tiene una valencia)
  • -oso, -ico (si tiene 2 valencias)
  • hipo...oso, -oso, -ico (si tiene 3 valencias)
  • hipo...oso, -oso, -ico, per...ico (si tiene 4 valencias)
Ejemplos:
NaClO2 procede el ácido cloroso (HClO2), sustituimos -oso por -ito seguido del elemento metálico terminado en -ico porque sólo tiene una valencia, por lo tanto su nomenclatura tradicional es cloríto sódico.
Fe2(S04)3 procede del ácido sulfúrico (H2SO4), sustituimos -ico por -ato seguido del elemento metálico terminado en -ico ya que el hierro tiene 2 valencias y en este caso actúa con la valencia mayor 3, por lo tanto su nomenclatura tradicional es sulfato férrico
Nomenclatura de stock: se nombra de forma similar a la nomenclatura tradicional seguido del elemento metálico indicando la valencia con la que actúa en números romanos entre paréntesis.
Ejemplos:
Fe2(S04)3 sulfato de hierro (III)
NaClO2 cloríto de sodio, cuando el elemento metálico sólo tiene una valencia no se indica su valencia, en este caso no se usaría clorito de sodio (I)
Nomenclatura sistemática: se nombra con el nombre del anión seguido por el nombre del catión y seguido por el prefijo que indica el numero de átomos del elemento metálico. En el caso de que el anión se encuentre entre paréntesis, el número de iones se indica mediante los prefijos griegos:
  • Para 2: bis-
  • Para 3: tris-
  • Para 4: tetrakis-
  • Para 5: pentakis-
  • Para 6: hexakis-
  • Para 7: heptakis-
  • Para 8: octakis-
  • ...
Ejemplos:
Actuando el hierro con valencia 2:
FeSO2 dioxosulfato (II) de hierro
FeSO3 trioxosulfato (IV) de hierro
FeSO4 tetraoxosulfato (VI) de hierro
Actuando el hierro con valencia 3:
Fe2(SO2)3 tris[dioxosulfato (II)] de dihierro
Fe2(SO3)3 tris[trioxosulfato (IV)] de dihierro
Fe2(SO4)3 tris[tetraoxosulfato (VI)] de dihierro

Ley de la segregación de caracteres independientes (3 de BGU) Interpretar el experimento y realizar dos ejemplos)

Ley de la segregación de caracteres independientes


El experimento de Mendel.
Mendel tomó plantas  procedentes de las semillas de la primera generación (F1) del experimento anterior (figura 1) y las polinizó entre sí. Del cruce obtuvo semillas amarillas y verdes en la proporción que se indica en la figura 3. Así pues, aunque el alelo que determina la coloración verde de las semillas parecía haber desaparecido en la primera generación filial, vuelve a manifestarse en esta segunda generación.
Interpretación del experimento.
Los dos alelos distintos para el color de la semilla presentes en los individuos de la primera generación filial, no se han mezclado ni han desaparecido , simplemente ocurría que se manifestaba sólo uno de los dos. Cuando el individuo  de fenotipo amarillo y genotipo Aa, forme los gametos, se separan los alelos, de tal forma que en cada gameto sólo habrá uno de los alelos y así puede explicarse los resultados obtenidos.
En el caso de los genes que presentan  herencia  intermedia, también se cumple el enunciado de la segunda ley. Si tomamos dos plantas de flores rosas  de la primera generación filial (F1) del cruce que se observa en la figura 2 y las cruzamos entre sí, se obtienen plantas con flores blancas, rosas y rojas, en la proporción que se indica en el esquema de la figura 4. También en este caso se manifiestan los alelos para el color rojo y blanco, que permanecieron ocultos en la primera generación filial.

Retrocruzamiento

En el caso de los genes que manifiestan herencia dominante, no existe ninguna diferencia aparente entre los individuos heterocigóticos (Aa) y los homocigóticos (AA), pues ambos individuos presentarían un fenotipo amarillo.
Si es homocigótico, toda la descendencia será igual, en este caso se cumple la primera Ley de Mendel.
Si es heterocigótico, en la descendencia volverá a aparecer  el caracter recesivo en una proporción del 50%.
La prueba del retrocruzamiento, o simplemente cruzamiento prueba, sirve para diferenciar el individuo homo del heterocigótico. Consiste en cruzar el fenotipo dominante con la variedad homocigota recesiva (aa).

Proteínas: clasificación, funciones biológicas (3 de BGU) Realizar un organizador gráfico

Proteínas: clasificación, funciones biológicas

Según su forma (estructurales):
a) Fibrosas (insolubles): presentan cadenas polipeptídicas largas de forma filamentosa o alargada y una estructura secundaria atípica. Confieren fuerza y elasticidad a la molécula. Son insolubles en agua y en disoluciones acuosas. Algunos ejemplos de éstas son queratina (cabello, uñas, piel), colágeno (tejido conectivo, tendones) y elastina (tejido conectivo elástico). 
b) Globulares (solubles): Se caracterizan por doblar sus cadenas en una forma esférica apretada o compacta dejando grupos hidrófobos hacia adentro de la proteína y grupos hidrófilos hacia afuera, lo que hace que sean solubles en disolventes polares como el agua, tienen funciones dinámicas como las enzimas, inmunoglobulinas, y proteínas de transporte (hemoglobina).  Suelen presentar giros alfa. 
Insulina (hormona reguladora de la glucosa en sangre), mioglobina (transporte de oxígeno), ribonucleasa (controla la síntesis de RNA)  Éste tipo de proteína realiza la mayor parte del trabajo químico de la célula (síntesis, metabólico, transporte etc). La mayoría de las enzimas, anticuerpos, algunas hormonas y proteínas de transporte, son ejemplos de proteínas globulares.  c) Mixtas: posee una parte fibrilar (comúnmente en el centro de la proteína) y otra parte globular (en los extremos).

Según su composición química:  a) Simples u holoproteínas: su hidrólisis sólo produce aminoácidos. Ejemplos de estas son la insulina y el colágeno (globulares y fibrosas).  b) Conjugadas o heteroproteínas: su hidrólisis produce aminoácidos y otras sustancias no proteicas con un grupo prostético.

 ALGUNAS FUNCIONES BIOLÓGICAS DE LAS PROTEÍNAS.

Enzimas (catalizadores biológicos)
Hormonas (insulina)
Proteínas protectoras (anticuerpos)
Proteínas de almacenamiento (caseína)
Proteínas estructurales (queratina, elastina)
Proteínas de transporte (hemoglobina) 

La importancia de las proteínas consiste tanto en la enorme cantidad de funciones que desempeñan en los procesos biológicos, como en la calidad de este tipo de funciones.  Puesto que existe un gran número de posibilidades para estructurar una proteína, también existe una amplia variedad de funciones.
Función estructural. Algunas glucoproteínas forman parte de las membranas celulares y por ende de todo el organismo. El colágeno y la elastina son proteínas que en el tejido conjuntivo, matriz orgánica de los huesos y córnea del ojo, forman las fibras colágenas y elásticas que representan aproximadamente un 30% de la proteína total del cuerpo aunque tiene muy poco valor alimenticio, respectivamente la queratina es constituyente de uñas, cabello, pelo de animales, escamas de los reptiles, plumas de las aves. En las células del sistema musculoesquelético la actina y miosina inducen deslizamientos entre los sarcómeros provocando las contracciones musculares.  Otras proteínas regulan la expresión de ciertos genes y otras regulan la división celular (como la ciclina). La especificidad de las proteínas explica algunos fenómenos biológicos como: la compatibilidad o no de transplantes de órganos; injertos biológicos; sueros sanguíneos; etc., o los procesos alérgicos e incluso algunas infecciones.
Función reguladora u hormonal. Algunas hormonas son también proteínas. Las hormonas son fabricadas por las células glandulares y son transportadas por la sangre para que puedan actuar sobre otras células del organismo. Por ejemplo la insulina, la vasopresina, la oxitocina, la tiroxina, la hormona del crecimiento, etc.
La insulina es necesaria para aprovechar los azúcares en el organismo, sin ella la concentración de azúcares aumenta en sangre desencadenando la diabetes mellitus que afecta actualmente a buena parte de la población mundial.  La vasopresina regula la absorción de agua en el riñón.  La oxitocina regula la secreción de leche materna, produce contracciones del útero al momento del parto y algunas actitudes relacionadas con el afecto y cuidado de la descendencia.
Función defensiva e inmunológica. Las más importantes son las inmunoglobulinas de la sangre que desempeñan funciones protectoras en el organismo ya que reconocen moléculas u organismos extraños, y cuando se unen a ellos facilitan su destrucción debido al sistema inmunitario. Estas proteínas son anticuerpos, se forman como respuesta del organismo a la presencia de sustancias extrañas o antígenos, a los que aglutinan o precipitan. En algunos insectos se forman toxinas que son sus proteínas de defensa, pero que pueden llegar a causar la  muerte de los organismos que sufren sus consecuencias.  Algunas proteínas regulan la expresión de ciertos genes y otras regulan la división celular (como la ciclina).
Función de reparación. Cuando el organismo sufre alguna herida, solo puede repararla si cuenta con las proteínas necesarias de reparación en la escala de lo pequeño.  Si existe una hemorragia, las proteínas participan en el proceso de la coagulación frenando la pérdida de sangre, produciendo fibrinógeno, fibrina y finalmente un coágulo. Cuando los procesos de reparación se desequilibran, las células pueden funcionar mal, morir o producir enfermedades como diabetes, Parkinson cáncer.
Función de transporte. Algunas de las proteínas encargadas de los transportadores son: la hemoglobina que transporta oxígeno en la sangre de los vertebrados, la hemocianina transporta oxígeno en la sangre de los invertebrados, la mioglobina transporta oxígeno en los músculos, las lipoproteínas transportan lípidos por la sangre los citocromos transportan electrones.
Función de reserva energética. Las proteínas grandes, generalmente con grupos fosfato, sirven para acumular y producir energía necesaria para la movilización del organismo en sistemas y músculos.

METABOLISMO
Las plantas absorben los nitratos y el amoniaco del suelo y sintetizan aminoácidos, así los animales dependen de las plantas para la obtención de nitrógeno metabólicamente útil.  Las proteínas que se ingieren a través de los alimentos se degradan en aminoácidos libres, y con éstos, se forman las proteínas propias de cada organismo. 
La digestión de las proteínas, que se ve favorecida por el cocinado de los alimentos aunque al ingerirlas llegan inalterables al estómago, luego por la acción del ácido clorhídrico, sufren una desnaturalización, estirando las moléculas enrolladas y facilitando así la acción de las hidrolasas proteolíticas.  La primera en actuar el la pepsina que es la proteasa responsable del desdoblamiento de proteínas. Su acción consiste en el ataque a pocos enlaces peptídicos para producir peptonas.  Las peptonas sufren el desdoblamiento en el intestino donde actúan tres enzimas pancreáticas: tripsina, quimotripsina y procinasa.
La degradación provocada, llega hasta el desdoblamiento de algunos péptidos y aminoácidos.  Finalmente actúa el jugo intestinal por medio de la enzima tripsina para liberar así los aminoácidos que serán absorbidos por las vellosidades intestinales mediante mecanismos de transporte activo que consume ATP y la presencia de iones sodio.  Continúa en el duodeno con la acción conjunta de los jugos pancreáticos e intestinales, reduciéndose a aminoácidos. Estos son absorbidos en el intestino y así pasan al torrente sanguíneo llegando al hígado, donde la utiliza para formar sus propias proteínas y se transforman unos aminoácidos en otros, (con excepción de los esenciales), pasando nuevamente al torrente circulatorio desde donde se redistribuyen hacia órganos y tejidos para formar cada una de las proteínas necesarias.  Una vez cubiertas todas las necesidades, el exceso de aminoácidos se destruye.
La parte que no es utilizada se elimina mayormente a través de la orina (90%) donde se encuentran algunos productos de deshecho como la urea, sales amoníacas y creatinina.  El riñón es capaz de eliminar amoníaco por la orina en forma de sales de amonio; el amoníaco obtenido se combina con iones H+ formando amonio que se elimina combinado con aniones.  La excreción urinaria de sales de amonio consume H+, por lo que estas reacciones dependen de los mecanismos renales de regulación del pH sanguíneo. 
La flora intestinal actúa sobre los grupos nitrogenados para elaborar el indol y escatol del olor desagradable característico de las heces fecales.  Como resultado de la degradación de proteínas, en la orina normal

También depende del valor biológico de las proteínas que se consuman, aunque en general, todas las recomendaciones siempre se refieren a proteínas de alto valor biológico. Si no lo son, las necesidades serán aún mayores.  Se recomiendan entre 40 y 60 gramos de proteínas al día para un adulto sano. La Organización Mundial de la Salud recomienda un valor de 0.8 gramos por kilogramo de peso y día. Por supuesto, durante el crecimiento, el embarazo o la lactancia estas necesidades aumentan.

Electrolitos ( 2 de BGU) Averiguar cinco ejemplos de electrolitos fuertes y debiles y no electrolitos

Electrolitos fuertes y electrolitos débiles


Los electrolitos (iones que pueden conducir la corriente eléctrica) se forman cuando se disuelve un soluto iónico en agua; este se disocia en iones positivos (cationes) y en iones negativos (aniones) que, por tener cargas diferentes, pueden conducir la corriente eléctrica.

Esta característica permite clasificar los solutos en “electrolitos” y “no electrolitos”.

Un electrolito será el que al disociarse da origen a una gran concentración de iones, hecho que permite mayor conductividad eléctrica. Se considera en la práctica que un electrolito fuerte se descompone en un 100%, lo cual impide equilibrios entre sus iones y la molécula correspondiente.

Un electrolito débil se disocia muy poco, de manera que no se produce una suficiente concentración de iones, por lo que no puede haber flujo de corriente eléctrica.

Las sustancias no electrolíticas tienen enlaces covalentes no polares que mantienen su individualidad al no ser disociadas por la acción de fuerzas electrostáticas. Algunas sustancias con enlaces covalentes polares no conducen la corriente eléctrica mientras se encuentran en estado sólido, líquido o gaseoso. Pero si se forma una solución acuosa, disolviéndolas en agua, conducen la corriente eléctrica, lo que indica que se han formado iones.

miércoles, 18 de marzo de 2015

Tema 1 (3 DE BGU) BIOLOGIA Recuperación (Realiza un organizador gráfico o mapa conceptual sobre el tema y presenta el primer dia de clases con el.blog.

Mitosis
Las células se reproducen duplicando su contenido y luego dividiéndose en dos. El ciclo de división es el medio fundamental a través del cual todos los seres vivos se propagan. En especies unicelulares como las bacterias y las levaduras, cada división de la célula produce un nuevo organismo. Es especies pluricelulares se requieren muchas secuencias de divisiones celulares para crear un nuevo individuo; la división celular también es necesaria en el cuerpo adulto para reemplazar las células perdidas por desgaste, deterioro o por muerte celular programada. Así, un humano adulto debe producir muchos millones de nuevas células cada segundo simplemente para mantener el estado de equilibrio y, si la división celular se detiene el individuo moriría en pocos días.
El ciclo celular comprende el conjunto de procesos que una célula debe de llevar a cabo para cumplir la replicación exacta del DNA y la segregación de los cromosomas replicados en dos células distintas. La gran mayoría de las células también doblan su masa y duplican todos sus orgánulos citoplasmáticos en cada ciclo celular: De este modo durante el ciclo celular un conjunto complejo de procesos citoplasmáticos y nucleares tienen que coordinarse unos con otros.
Las plantas y los animales están formados por miles de millones de células individuales organizadas en tejidos y órganos que cumplen funciones específicas. Todas las células de cualquier planta o animal han surgido a partir de una única célula inicial —el óvulo fecundado— por un proceso de división. La mitosis es la división nuclear asociada a la división de las células somáticas – células de un organismo eucariótico que no van a convertirse en células sexuales. Una célula mitótica se divide y forma dos células hijas idénticas, cada una de las cuales contiene un juego de cromosomas idéntico al de la célula parental. Después cada una de las células hijas vuelve a dividirse de nuevo, y así continúa el proceso. Salvo en la primera división celular, todas las células crecen hasta alcanzar un tamaño aproximado al doble del inicial antes de dividirse. En este proceso se duplica el número de cromosomas (es decir, el ADN) y cada uno de los juegos duplicados se desplaza sobre una matriz de microtúbulos hacia un polo de la célula en división, y constituirá la dotación cromosómica de cada una de las dos células hijas que se forman.
Durante la mitosis existen cuatro fases:
  •  
  • Profase: Un huso cromático empieza a formarse fuera del núcleo celular, mientras los cromosomas se condensan. Se rompe la envoltura celular y los microtúbulos del huso capturan los cromosomas.
  •  
  • Metafase: Los cromosomas se alinean en un punto medio formando una placa metafásica.
  •  
  • Anafase: Las cromátidas hermanas se separan bruscamente y son conducidas a los polos opuestos del huso, mientras que el alargamiento del huso aumenta más la separación de los polos.
  •  
  • Telofase: El huso continúa alargándose mientras los cromosomas van llegando a los polos y se liberan de los microtúbulos del huso; posteriormente la membrana se comienza a adelgazar por el centro y finalmente se rompe. Después de esto, en torno a los cromosomas se reconstruye la envoltura nuclear.
  •  
ProfaseEl comienzo de la mitosis se reconoce por la aparición de cromosomas como formas distinguibles, conforme se hacen visibles los cromosomas adoptan una apariencia de doble filamento denominada cromátidas, estas se mantienen juntas en una región llamada centrómero, y es en este momento cuando desaparecen los nucleolos. La membrana nuclear empieza a fragmentarse y el nucleoplasma y el citoplasma se hacen uno solo. En esta fase puede aparecer el huso cromático y tomar los cromosomas.
MetafaseEn esta fase los cromosomas se desplazan al plano ecuatorial de la célula, y cada uno de ellos se fija por el centrómero a las fibras del huso nuclear.
AnafaseEsta fase comienza con la separación de las dos cromátidas hermanas moviéndose cada una a un polo de la célula. El proceso de separación comienza en el centrómero que parece haberse dividido igualmente.
TelofaseAhora, los cromosomas se desenrollan y reaparecen los nucleolos, lo cual significa la regeneración de núcleos interfásicos. Para entonces el huso se ha dispersado, y una nueva membrana ha dividido el citoplasma en dos.



   
  Los organismos superiores que se reproducen de forma sexual se forman a partir de la unión de dos células sexuales especiales denominadas gametos. Los gametos se originan mediante meiosis, proceso de división de las células germinales. La meiosis se diferencia de la mitosis en que sólo se transmite a cada célula nueva un cromosoma de cada una de las parejas de la célula original. Por esta razón, cada gameto contiene la mitad del número de cromosomas que tienen el resto de las células del cuerpo. Cuando en la fecundación se unen dos gametos, la célula resultante, llamada cigoto, contiene toda la dotación doble de cromosomas. La mitad de estos cromosomas proceden de un progenitor y la otra mitad del otro.

     Dado que la meiosis consiste en dos divisiones celulares, estas se distinguen como Meiosis I y Meiosis II. Ambos sucesos difieren significativamente de los de la mitosis. Cada división meiotica se divide formalmente en los estados de: Profase, Metafase, Anafase y Telofase. De estas la más compleja y de más larga duración es la Profase I, que tiene sus propias divisiones: Leptoteno, Citogeno, Paquiteno, Diploteno y Diacinesis.
 Meiosis 1

 
    Las características típicas de la meiosis I, solo se hacen evidentes después de la replicación del DNA, en lugar de separarse las cromátidas hermanas se comportan como bivalente o una unidad, como si no hubiera ocurrido duplicación formando una estructura bivalente que en si contiene cuatro cromátidas. Las estructuras bivalentes se alinean sobre el huso, posteriormente los dos homólogos duplicados se separan desplazándose hacia polos opuestos, a consecuencia de que las dos cromátidas hermanas se comportan como una unidad, cuando la célula meiótica se divide cada célula hija recibe dos copias de uno de los dos homólogos. Por lo tanto las dos progenies de esta división contienen una cantidad doble de DNA, pero estas difieren de las células diploides normales.  
ProfaseLeptoteno:

       En esta fase, los cromosomas se hacen visibles, como hebras largas y finas. Otro aspecto de la fase leptoteno es el desarrollo de pequeñas áreas de engrosamiento a lo largo del cromosoma, llamadas cromómeros, que le dan la apariencia de un collar de perlas.
 
Cigoteno:

     
Es un período de apareamiento activo en el que se hace evidente que la dotación cromosómica del meiocito corresponde de hecho a dos conjuntos completos de cromosomas. Así pues, cada cromosoma tiene su pareja, cada pareja se denomina par homólogo y los dos miembros de la misma se llaman cromosomas homólogos.
Paquiteno:

 
     Esta fase se caracteriza por la apariencia de los cromosomas como hebras gruesas indicativas de una sinapsis completa. Así pues, el número de unidades en el núcleo es igual al número n. A menudo, los nucleolos son muy importantes en esta fase. Los engrosamientos cromosómicos en forma de perlas, están alineados de forma precisa en las parejas homólogas, formando en cada una de ellas un patrón distintivo
Diploteno:

 
     Ocurre la duplicación longitudinal de cada cromosoma homólogo, al ocurrir este apareamiento las cromátidas homólogas parecen repelerse y separarse ligeramente y pueden apreciarse unas estructuras llamadas quiasmas entre las cromátidas.ademas La aparición de estos quiasmas nos hace visible el entrecruzamiento ocurrido en esta fase.
 
Diacinesis:

 
    Esta etapa no se diferencia sensiblemente del diploteno, salvo por una mayor contracción cromosómica. Los cromosomas de la interfase, en forma de largos filamentos, se han convertido en unidades compactas mucho más manejables para los desplazamientos de la división meiótica.
Metafase
 
      Al llegar a esta etapa la membrana nuclear y los nucleolos han desaparecido y cada pareja de cromosomas homólogos ocupa un lugar en el plano ecuatorial. En esta fase los centrómeros no se dividen; esta ausencia de división presenta una diferencia importante con la meiosis. Los dos centrómeros de una pareja de cromosomas homólogos se unen a fibras del huso de polos opuestos.
 
Anafase
 
     Como la mitosis la anafase comienza con los cromosomas moviéndose hacia los polos. Cada miembro de una pareja homologa se dirige a un polo opuesto
Telofase

 
     Esta telofase y la interfase que le sigue, llamada intercinesis, son aspectos variables de la meiosis I. En muchos organismos, estas etapas ni siquiera se producen; no se forma de nuevo la membrana nuclear y las células pasan directamente a la meiosis II.
       En otros organismos la telofase I y la intercinesis duran poco; los cromosomas se alargan y se hacen difusos, y se forma una nueva membrana nuclear. En todo caso, nunca se produce nueva síntesis de DNA y no cambia el estado genético de los cromosomas.
Meiosis II
Profase

      Esta fase se caracteriza por la presencia de cromosomas compactos en numero haploide.
 Los centroiolos se desplazan hacia los polos opuestos de las células
Metafase

 
     En esta fase, los cromosomas se disponen en el plano ecuatorial. En este caso, las cromátidas aparecen, con frecuencia, parcialmente separadas una de otra en lugar de permanecer perfectamente adosadas, como en la mitosis.
Anafase

 
     Los centrómeros se separan y las cromátidas son arrastradas por las fibras del huso acromático hacia los polos opuestos
Telofase

 
    En los polos, se forman de nuevo los núcleos alrededor de los cromosomas.
      En suma, podemos considerar que la meiosis supone una duplicación del material genético (fase de síntesis del DNA) y dos divisiones celulares. Inevitablemente, ello tiene como resultado unos productos meióticos con solo la mitad del material genético e el meiosito original.

Tema 1 Compuestos orgánicos Química superior recuperación ( Escribe dos ejemplos de cada una de las funciones oxigenadas con sus nombres y presenta el primer dia de clase con el, blog)

Compuestos oxigenados

Se denominan compuestos oxigenados aquellos que están constituidos por carbono, hidrógeno y oxígeno.
El oxígeno es un elemento cuyos átomos tienen ocho protones en su núcleo y ocho electrones, dispuestos así: dos electrones en el nivel interno y seis en el externo. Así puede formar enlaces covelentes ya sean simples o dobles. Esta capacidad de combinación del oxígeno da la posibilidad de crear nuevos conjuntos de grupos carbonados. Dependiendo de su grupo funcional, estos pueden ser
A continuación podéis observar una imagen con los distintos grupos funcionales de los compuestos oxigenados.


Tema 1 Leyes de los gases (2 de BGU Recuperación) ( Inventarse dos problemas de cada una de leyes, resolverlos y presentar el primer dia de clases)

PROBLEMAS RESUELTOS

"Una de las cosas más agradables de los problemas, es que muchos de ellos sólo existen en nuestra imaginación." Steve Allen.
1.- Una cantidad de gas ocupa un volumen de 80 cm3 a una presión de 750 mm Hg. ¿Qué volumen ocupará a una presión de 1,2 atm.si la temperatura no cambia?
Como la temperatura y la masa permanecen constantes en el proceso, podemos aplicar la ley de Boyle: P1.V1 = P2.V2
 Tenemos que decidir qué unidad de presión vamos a utilizar. Por ejemplo atmósferas.
Como 1 atm = 760 mm Hg, sustituyendo en la ecuación de Boyle:
 Se puede resolver igualmente con mm de Hg.
2.- El volumen inicial de una cierta cantidad de gas es de 200 cm3 a la temperatura de 20ºC. Calcula el volumen a 90ºC si la presión permanece constante.
Como la presión y la masa permanecen constantes en el proceso, podemos aplicar la ley de Charles y Gay-Lussac:
El volumen lo podemos expresar en cm3 y, el que calculemos, vendrá expresado igualmente en cm3, pero la temperatura tiene que expresarse en Kelvin.
3.- Una cierta cantidad de gas se encuentra a la presión de 790 mm Hg cuando la temperatura es de 25ºC. Calcula la presión que alcanzará si la temperatura sube hasta los 200ºC.
Como el volumen y la masa  permanecen constantes en el proceso, podemos aplicar la ley de   Gay-Lussac:
La presión la podemos expresar en mm Hg y, la que calculemos, vendrá expresada igualmente en mm Hg, pero la temperatura tiene que expresarse en Kelvin.
4.- Disponemos de un recipiente de volumen variable. Inicialmente presenta un volumen de 500 cm3 y contiene 34 g de amoníaco. Si manteniendo constante la P y la T, se introducen 68 g de amoníaco, ¿qué volumen presentará finalmente el recipiente?
Ar (N)=14. Ar (H)=1.
Manteniendo constante la P y la T, el volumen es directamente proporcional al número de moles del gas. El mol de amoníaco, NH3, son 17 g luego:
 Inicialmente  hay en el recipiente 34 g de gas que serán 2 moles y al final hay 102 g de amoníaco que serán 6 moles.
5.- Un gas ocupa un volumen de 2 l en condiciones normales. ¿Qué volumen ocupará esa misma masa de gas a 2 atm y 50ºC?
Como partimos de un estado inicial de presión, volumen y temperatura, para llegar a un estado final en el que queremos conocer el volumen, podemos utilizar la ley combinada de los gases ideales, pues la masa permanece constante:
la temperatura obligatoriamente debe ponerse en K
Como se observa al aumentar la presión el volumen ha disminuido, pero no de forma proporcional, como predijo Boyle; esto se debe a la variación de la temperatura.
6.- Un recipiente cerrado de 2 l. contiene oxígeno a 200ºC y 2 atm. Calcula:
a)  Los gramos de oxígeno contenidos en el recipiente.
b) Las moléculas de oxígeno presentes en el recipiente.
Ar(O)=16.
a) Aplicando la ecuación general de los gases  PV=nRT podemos calcular los moles de oxígeno:
b) Utilizando el NA calculamos el número de moléculas de oxígeno:
7.- Tenemos 4,88 g de un gas cuya naturaleza es SO2 o SO3. Para resolver la duda, los introducimos en un recipiente de 1 l y observamos que la presión que ejercen a 27ºC es de 1,5 atm. ¿De qué gas se trata?
Ar(S)=32.Ar(O)=16.
Aplicando la ecuación general de los gases  PV=nRT podemos calcular los moles correspondientes a esos 4,88 gramos de gas:
La masa molar del gas será:  
Como la M(SO2)=64 g/mol y la M(SO3)=80g/mol. El gas es el SO3
8.-Un mol de gas ocupa 25 l y su densidad es 1,25 g/l, a una temperatura y presión determinadas. Calcula la densidad del gas en condiciones normales.
Conociendo el volumen que ocupa 1 mol del gas y su densidad, calculamos la masa del mol:
; por lo tanto
 Como hemos calculado la masa que tienen un mol y sabemos que un mol de cualquier gas ocupa 22,4 litros en c.n., podemos calcular su densidad:
9.- Un recipiente contienen 100 l de O2 a 20ºC. Calcula: a) la presión del O2, sabiendo que su masa es de 3,43 kg. b) El volumen que ocupara esa cantidad de gas en c.n.
a) Aplicamos la ecuación general de los gases PV=nRT  pero previamente calculamos los moles de gas:
       
b) Para calcular el volumen que ocupan los 107,19 moles en c.n. podemos volver a aplicar la ecuación PV=nRT  con las c.n. o la siguiente proporción:
10.- Calcula la fórmula molecular de un compuesto sabiendo que 1 l de su gas, medido a 25ºC y 750 mm Hg de presión tiene una masa de 3,88 g y que su análisis químico ha mostrado la siguiente composición centesimal: C, 24,74 %; H, 2,06 % y Cl, 73,20 %.
Ar(O)=16. Ar(H)=1. Ar(Cl)=35,5

Primero calculamos la fórmula empírica:
Como las tres relaciones son idénticas, la fórmula empírica será: CHCl.
Para averiguar la fórmula molecular, necesitamos conocer la masa molar del compuesto. La vamos a encontrar a partir de la ecuación general de los gases: PV=nRT.

Estos moles son los que corresponden a los 3,88 g de compuesto, luego planteamos la siguiente proporción para encontrar la masa molar:
Como la fórmula empírica es  CHCl su masa molar “empírica” es 48,5 g/mol.
Al dividir la masa molar del compuesto (97 g/mol) entre la masa molar “empírica”
deducimos que la fórmula del compuesto es C2H2Cl2.