miércoles, 3 de octubre de 2012

FUNCIÓN LINEAL

Función lineal


En matemática, el término función lineal puede referirse a dos conceptos diferentes.
En primer lugar, dentro de la geometría y el álgebra elemental, una función lineal es una función polinómica de primer grado; es decir, una función cuya representación en el plano cartesiano es una línea recta. Esta función se puede escribir como:
 f(x) = m x + b \,
donde m y b son constantes reales y x es una variable real. La constante m es la pendiente de la recta, y b es el punto de corte de la recta con el eje y. Si se modifica m entonces se modifica la inclinación de la recta, y si se modifica b, entonces la línea se desplazará hacia arriba o hacia abajo.
En el segundo caso, en matemáticas más avanzadas, una función lineal es una función que es una aplicación lineal. Esto es, una aplicación entre dos espacios vectoriales que preserva la suma de vectores y la multiplicación por un escalar.
Una función lineal según la primera definición dada anteriormente representa una aplicación lineal si y sólo si b = 0. Así, algunos autores llaman función lineal a aquella de la forma  f(x) = m x mientras que llaman función afín a la que tiene la forma  f(x) = m x + b cuando b es distinto de cero.

Ejemplo

FuncionLineal03.svg
Una función lineal de una única variable dependiente x es de la forma:

   y = m \; x + b \,
que se conoce como ecuación de la recta en el plano xy.
En la figura se ven dos rectas, que corresponden a las ecuaciones lineales siguientes:

   y = 0,5\; {x} + 2 \,
en esta recta el parámetro m= 1/2 por tanto de pendiente 1/2, es decir, cuando aumentamos x en una unidad entonces y aumenta en 1/2 unidad, el valor de b es 2, luego la recta corta el eje y en el punto y= 2.
En la ecuación:

   y = -{x} + 5 \,
la pendiente de la recta es el parámetro m= -1, es decir, cuando el valor de x aumenta en una unidad, el valor de y disminuye en una unidad; el corte con el eje y es en y= 5, dado que el valor de b= 5.
En una recta el valor de m se corresponde al ángulo \theta\, de inclinación de la recta con el eje de las x a través de la expresión:

   m = \tan \theta \,

No hay comentarios:

Publicar un comentario