PROBLEMAS RESUELTOS
"Una de las cosas más agradables de los
problemas, es que muchos de ellos sólo existen en nuestra
imaginación." Steve Allen.
1.- Una cantidad de gas ocupa un
volumen de 80 cm3 a una presión de 750 mm Hg. ¿Qué volumen ocupará a
una presión de 1,2 atm.si la temperatura no cambia?
Como la temperatura y la masa permanecen constantes en el proceso, podemos aplicar la ley de Boyle: P1.V1 = P2.V2
Se puede resolver igualmente con mm de Hg.Tenemos que decidir qué unidad de presión vamos a utilizar. Por ejemplo atmósferas. Como 1 atm = 760 mm Hg, sustituyendo en la ecuación de Boyle: |
2.- El volumen inicial
de una cierta cantidad de gas es de 200 cm3 a la temperatura de 20ºC.
Calcula el volumen a 90ºC si la presión permanece constante.
Como la presión y la masa permanecen constantes en el proceso, podemos aplicar la ley de Charles y Gay-Lussac:
El volumen lo
podemos expresar en cm3 y, el que calculemos, vendrá expresado
igualmente en cm3, pero la temperatura tiene que expresarse en Kelvin.
|
3.- Una cierta cantidad de gas se encuentra a la
presión de 790 mm Hg cuando la temperatura es de 25ºC. Calcula la
presión que alcanzará si la temperatura sube hasta los 200ºC.
Como el volumen y la masa permanecen constantes en el proceso, podemos aplicar la ley de Gay-Lussac:
La presión la podemos expresar en mm
Hg y, la que calculemos, vendrá expresada igualmente en mm Hg, pero la
temperatura tiene que expresarse en Kelvin.
|
4.- Disponemos de un recipiente de volumen variable.
Inicialmente presenta un volumen de 500 cm3 y contiene 34 g de
amoníaco. Si manteniendo constante la P y la T, se introducen 68 g de
amoníaco, ¿qué volumen presentará finalmente el recipiente?
Ar (N)=14. Ar (H)=1.
Manteniendo constante la P y la T,
el volumen es directamente proporcional al número de moles del gas. El
mol de amoníaco, NH3, son 17 g luego:
Inicialmente hay en el recipiente 34 g de gas que serán 2 moles y al final hay 102 g de amoníaco que serán 6 moles. |
5.- Un gas ocupa un volumen de 2 l en condiciones normales. ¿Qué volumen ocupará esa misma masa de gas a 2 atm y 50ºC?
Como partimos de un estado inicial
de presión, volumen y temperatura, para llegar a un estado final en el
que queremos conocer el volumen, podemos utilizar la ley combinada de
los gases ideales, pues la masa permanece constante:
la temperatura obligatoriamente debe ponerse en K
Como se observa al aumentar la
presión el volumen ha disminuido, pero no de forma proporcional, como
predijo Boyle; esto se debe a la variación de la temperatura.
|
6.- Un recipiente cerrado de 2 l. contiene oxígeno a 200ºC y 2 atm. Calcula:
a) Los gramos de oxígeno contenidos en el recipiente. b) Las moléculas de oxígeno presentes en el recipiente. Ar(O)=16.
a) Aplicando la ecuación general de los gases PV=nRT podemos calcular los moles de oxígeno:
b) Utilizando el NA calculamos el número de moléculas de oxígeno:
|
7.- Tenemos 4,88 g de un gas cuya naturaleza es SO2
o SO3. Para resolver la duda, los introducimos en un recipiente de 1 l
y observamos que la presión que ejercen a 27ºC es de 1,5 atm. ¿De qué
gas se trata?
Ar(S)=32.Ar(O)=16.
Aplicando la ecuación general de los gases PV=nRT podemos calcular los moles correspondientes a esos 4,88 gramos de gas:
La masa molar del gas será:
Como la M(SO2)=64 g/mol y la M(SO3)=80g/mol. El gas es el SO3
|
8.-Un mol de gas ocupa 25 l y su densidad es 1,25
g/l, a una temperatura y presión determinadas. Calcula la densidad del
gas en condiciones normales.
Conociendo el volumen que ocupa 1 mol del gas y su densidad, calculamos la masa del mol:
; por lo tanto
Como hemos calculado la masa que
tienen un mol y sabemos que un mol de cualquier gas ocupa 22,4 litros
en c.n., podemos calcular su densidad:
|
9.- Un recipiente contienen 100 l
de O2 a 20ºC. Calcula: a) la presión del O2, sabiendo que su masa es de
3,43 kg. b) El volumen que ocupara esa cantidad de gas en c.n.
a) Aplicamos la ecuación general de los gases PV=nRT pero previamente calculamos los moles de gas:
b) Para calcular el
volumen que ocupan los 107,19 moles en c.n. podemos volver a aplicar la
ecuación PV=nRT con las c.n. o la siguiente proporción:
|
10.- Calcula la fórmula molecular
de un compuesto sabiendo que 1 l de su gas, medido a 25ºC y 750 mm Hg de
presión tiene una masa de 3,88 g y que su análisis químico ha
mostrado la siguiente composición centesimal: C, 24,74 %; H, 2,06 % y
Cl, 73,20 %.
Ar(O)=16. Ar(H)=1. Ar(Cl)=35,5 Primero calculamos la fórmula empírica:
Como las tres relaciones son idénticas, la fórmula empírica será: CHCl.
Para averiguar la fórmula molecular,
necesitamos conocer la masa molar del compuesto. La vamos a encontrar a
partir de la ecuación general de los gases: PV=nRT.
Estos moles son los que corresponden
a los 3,88 g de compuesto, luego planteamos la siguiente proporción
para encontrar la masa molar:
Como la fórmula empírica es CHCl su masa molar “empírica” es 48,5 g/mol.
Al dividir la masa molar del compuesto (97 g/mol) entre la masa molar “empírica”
deducimos que la fórmula del compuesto es C2H2Cl2.
|
No hay comentarios:
Publicar un comentario